

Exercise Manual for Course 522

Building Responsive
Web Applications With CSS3

522/MA/K.1/709/J.2

by Scott Hopkinson

Technical Editor:
Richard Innis

© LEARNING TREE INTERNATIONAL, INC.
All rights reserved.

All trademarked product and company names are the property of their respective trademark holders.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, or translated into any language, without the prior written permission of the publisher.

Copying software used in this course is prohibited without the express permission of Learning Tree International, Inc. Making unauthorized

copies of such software violates federal copyright law, which includes both civil and criminal penalties.

522-MA-i © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Exercise Manual Contents

Legend for Course Icons .. ii

Hands-On Exercise 1.1: Prepping HTML for Style .. 1

Hands-On Exercise 2.1: Styling Container Geometry ... 9

Hands-On Exercise 3.1: Styling Content, Part 1 .. 23

Hands-On Exercise 3.2: Styling Content, Part 2 .. 31

Hands-On Exercise 4.1: Positioning Containers, Part 1 .. 41

Hands-On Exercise 4.2: Positioning Containers, Part 2 .. 51

Hands-On Exercise 5.1: Web Typography .. 63

Hands-On Exercise 6.1: Building Accessible Forms ... 77

Hands-On Exercise 6.2: Building Accessible Tables ... 89

Hands-On Exercise 7.1: Managing a Sass Project .. 99

522-MA-ii © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Legend for Course Icons

Standard icons are used in the hands-on exercises to illustrate various
phases of each exercise.

 Major step
 Warning

 1.  Action

Hint

 Checkpoint

Stop

 Question

Congratulations

 Information

Bonus

522-MA-1 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 1.1:
Prepping HTML for Style

Overview

During this course, we will convert a starting HTML template into an
accessible and responsive HTML5 website powered by CSS, with a small
sprinkling of JavaScript syntactic sugar added for that finishing touch.

When you need to add code to existing HTML or CSS, the code is displayed
bookended by the existing code to help you find the correct location for your
work. The code to add is always marked in bold text.

Our first exercise involves adding required elements for accessibility and
creating an external stylesheet template.

Part 1

1.  Open and briefly examine our HTML starting template in the browser

of your choice (aka Chrome!):

C:\inetpub\wwwroot\pizzatree\Ex\Ex1.1\index.html

2.  Open the same index.html file in the IDE of your choice.

 This is a rather typical HTML file, devoid of HTML5 elements

that assist screen readers by providing context for the content. Too

many divs, zero style.

3.  Within the opening <head> element on line 2, add a language

attribute and set the value to English:

<!DOCTYPE html>

<head lang="en">

<link rel="icon" type="image/png" href="img/pizza_tree_ico.png" />

522-MA-2 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 1.1:
Prepping HTML for Style
(continued)

4.  Directly after the same <head> element, add a <meta> element that

tells the browser to render the page in Unicode, which supports

many languages (you might want to use a different language than

English!):

<head>

<meta charset="UTF-8">

<link rel="icon" type="image/png" href="img/pizza_tree_ico.png" />

5.  Find the first <div> element at around line 9. This provides no

context to screen readers or search engines. HTML5 provides

alternative contextual HTML elements for this very purpose.

Convert the <div> to a <nav> element, and don’t forget to convert

the closing </div> near line 17.

6.  Examine around line 18. We have another useless <div> element,

this time acting as a container for some important content—our

featured content.

Directly under the <div> element around line 18 and before the

<h2>, add a new <header> element that acts as a container for our

featured content. Close this new <header> element after the image

and before the closing <div> element near line 21. Our featured

content should now look like this:

<div>

 <header>

 <h2>The Pizza of your Dreams!</h2>

 </header>

</div>

522-MA-3 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 1.1:
Prepping HTML for Style

(continued)

7.  Imagine trying to provide context (as a screen reader) to the <div>

elements starting around line 24! We can do much better with

<article> and <section> elements.

Convert the container <div> element around line 24 into an

<article> element (don’t forget to close the match near line 37!)

and convert each containing <div> element that has child Pizza

Special <h3><p> pair into a <section> element:

<article>

 <section>

 <h3>Washington Special</h3>

 <p>2x LG 2-Topping $19.99

 </section>

 <section>

 <h3>Ottawa Special</h3>

 <p>3x MD 3-Topping $19.99

 </section>

 <section>

 <h3>London Special</h3>

 <p>1x LG 6-Topping £19.99

 </section>

</article>

8.  Find yet another unhelpful <div> element near line 38 used as a

container for our testimonials and company history. Convert this to

an <article> element.

9.  The last <div> element contains our copyright information and is

clearly a footer, so convert it to a <footer> element.

522-MA-4 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 1.1:
Prepping HTML for Style
(continued)

Part 2

10.  Save your accessible HTML5 starter template and switch back to

your browser. Reload the page and you should notice: nothing has

changed! Rather, the content is the same, but now the content has

context for screen readers and search engines.

It’s now time to create our style template. Create a new folder called

/css in the Ex 1.1 folder. In this new folder, create a new file called

default.css

11.  Add a link to load this new default.css file to your index.html

document. This should be added within the <head> element, after

any <meta> elements (don’t forget the rel attribute!). It does not

matter if you place your <link> before or after the <title>

element, but it will help with readability if you place multiple <link>

elements sequentially:

<link rel="icon" type="image/png" href="img/pizza_tree_ico.png" />

<link rel="stylesheet" href="css/default.css" />

<title>Pizza Tree</title>

12.  Save your index.html document and open the new default.css

document you created in Step 10.

We are going to style the following elements within this stylesheet:

<nav> <h2>

<a> <section>

<div> <p>

<header> <footer>

522-MA-5 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 1.1:
Prepping HTML for Style

(continued)

13.  Add the appropriate element selectors to your stylesheet. We will

add CSS properties and values in the next step. Your current CSS

stylesheet should look like the following:

nav {

}

a {

}

div {

}

header {

}

h2 {

}

section {

}

p {

}

footer {

}

522-MA-6 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 1.1:
Prepping HTML for Style
(continued)

14.  Before you save and test (nothing would change in appearance

despite all your hard work), add a style rule for the <h2> element to

change the text color to red:

h2 {

 color:red;

}

15.  Save both your index.html and default.css files, and switch

back to your browser to preview your work. The only visible change

is the color of the <h2> element text, but our template is now

accessible and follows best practices for loading external CSS

documents.

16.  Still in your browser, press <F12> to load the browser debugger

panel, and inspect the <h2> element by pressing

<Ctrl><Shift><C> (or the element inspect button on the upper

left of the debugger panel).

522-MA-7 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 1.1:
Prepping HTML for Style

(continued)

 As you move your cursor around the viewport, you’ll see the

debugger highlight each container in a pale blue box. Click the text

The Pizza of your Dreams, and notice the debugger now shows

you the CSS rule in the bottom right of the debugger tool. In addition,

default user-agent styles are also displayed:

17.  Carefully place your cursor next to the color:red property set

within the h2 selector from default.css, and uncheck the

checkbox. The h2 text in your viewport should revert to the color

from the user-agent stylesheet. Click the checkbox again to change

the color back to red.

18.  Click anywhere within the white space of the h2 selector from

default.css, and add the following property set:

font-size:4em;

You should see the viewport change again. This is an easy way to
play the what-if game when testing potential changes to CSS files
without having to save/reload.

522-MA-8 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 1.1:
Prepping HTML for Style
(continued)

 Congratulations! You have finished the exercise.

Th is i s t he en d of t he exerci se.

522-MA-9 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 2.1:
Styling Container Geometry

Overview

In this exercise, we will use CSS to identify the geometry of our HTML
containers and customize this geometry to suit our design requirements. This
will help us later as we position page elements with accuracy and
consistency. Screenshots taken for this exercise are in 600px viewport width.

Part 1

1.  Open the starting point for Hands-On Exercise 2.1 in your browser

first, followed by your IDE. This is where we left off after Ex 1.1:

C:\inetpub\wwwroot\pizzatree\Ex\Ex2.1\index.html

2.  Open the CSS file referenced in the <link> element within your

IDE. You may wish to close your previous exercise files.

C:\inetpub\wwwroot\pizzatree\Ex\Ex2.1\css\default.css

3.  Apply the Meyer reset to index.html by adding a link element

before the reference to the default stylesheet. This will eliminate any

inconsistencies between browser renders. This reset file has been

provided in the /css folder of this exercise.

<link rel="stylesheet" href="css/reset.css" />

522-MA-10 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 2.1:
Styling Container Geometry
(continued)

4.  Save index.html and preview in a browser, noting the dramatic

change to the basic content:

5.  The reset is a great starting point for browser consistency, but there

will still be human error issues when we assign heights and widths to

containers that have box model properties such as border and

padding.

Switch to default.css in your IDE and eliminate this box-model

sizing issue by applying a generic selector rule as the first selector at

the top of the file:

* {

 box-sizing: border-box

}

6.  Apply the following background color values to the associated

selectors:

nav background:skyblue;

a background:hotpink;

div background:tomato;

section background:yellowgreen;

p background:burlywood;

footer background:orchid;

522-MA-11 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 2.1:
Styling Container Geometry

(continued)

7.  Continuing within default.css, change the color of the <header>

element to white; recall we assigned the value of red as a test at the

end of the last exercise, but the header won’t be visible on a tomato

background:

h2 {

 color:white;

}

8.  Save default.css and preview index.html in a browser:

9.  Assign heights to the div and section selectors to approximate

their dimension as seen in the finished case study:

div {

 height:400px;

 background:tomato

}

section {

 height:120px;

 background:yellowgreen

}

522-MA-12 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 2.1:
Styling Container Geometry
(continued)

10.  Assign a width of 100% to the anchor selector to force the anchor to

occupy the same width as the parent list items:

a {

 width:100%;

 background:hotpink

}

11.  Save default.css and preview index.html in a browser:

 Why haven’t the anchors responded to our dimension assignment

the way the div and the section have?

Answer: Anchors are inline elements and cannot be assigned height or

width.

522-MA-13 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 2.1:
Styling Container Geometry

(continued)

12.  Return to default.css and change the display property of the

anchor selector from inline (which it is by default) to inline-block.

inline-block forces inline elements to accept dimension

properties but won’t inherit the top and bottom margins of full

block-level elements:

a {

 display:inline-block;

 width:100%;

13.  Save default.css and preview index.html in a browser:

14.  We’re going to start styling individual regions of our website. It’s a

best practice to create separate stylesheets for separate areas of

functionality, much as you would do for JavaScript files.

Within the /css folder of Ex2.1, create the following new CSS

documents:

nav.css

feature.css

15.  Starting around line 9 of default.css, cut (remove for pasting

elsewhere) the div, header, and h2 selector contents. Switch to

the new feature.css document you created in Step 14, and paste

the selectors you just copied here.

522-MA-14 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 2.1:
Styling Container Geometry
(continued)

16.  Switch to index.html in your IDE, and add a stylesheet link to your

new feature.css stylesheet directly after the link to

default.css around line 9:

<link rel="stylesheet" href="css/default.css" />

<link rel="stylesheet" href="css/feature.css" />

<title>Pizza Tree</title>

17.  Save all three open files in your IDE: index.html, default.css,

and feature.css. You won’t see any changes if you preview

index.html in your browser, but we are on our way to a

modularized project that will be easy to manage and test.

18.  Switch to feature.css in your IDE and center the content of the

header selector:

header {

 text-align:center;

}

19.  Switch back to index.html. We are going to assign a background

image of a delicious pizza to our menu and features, but not to the

rest of our content. This requires adding a container for this

background image that contains our menu and features.

Wrap a <div> element starting around the <nav> element around

line 14 and ending after the pre-existing <div> element around line

28.

522-MA-15 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 2.1:
Styling Container Geometry

(continued)

20.  Give this new <div> element an id of "container" and indent the

now child <nav> and sibling <div> elements appropriately:

<div id="container">

 <nav>

 Pizza Tree

 Our Menu

 Order

 Do Nows

 Exercises

 </nav>

 <div>

 <header>

 <h2>The Pizza of your Dreams!</h2>

 </header>

 </div>

</div>

21.  Switch to default.css and add a selector that targets the <div

id="container"> element you added in the last step. Set the

background to the image pizzabg.jpg located in the /img folder

of Ex2.1:

div#container {

 background-image:url(../img/pizzabg.jpg);

}

22.  Remove the tomato background color from the div selector within

feature.css.

522-MA-16 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 2.1:
Styling Container Geometry
(continued)

23.  Save feature.css, default.css, and index.html, and

preview index.html within a browser:

24.  The pizza is far too large for a 600px-wide viewport. We also need a

transparent gradient background on our nav element so the gradient

glow from the pizza shows through the nav element, creating the

look from our completed case study.

Switch back to default.css and update the div#container

selector with a background-size rule of 100%:

div#container {

 background-image:url(../img/pizzabg.jpg);

 background-size:100%;

}

522-MA-17 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 2.1:
Styling Container Geometry

(continued)

25.  Save default.css and preview your changes in index.html in a

browser:

 600px 392px 1280px

 Setting the background image to 100% width does not work for

all viewports! Neither will setting it to auto, or any other value we

have covered so far. We need a responsive value, which we will

cover in a later chapter.

26.  Return to default.css in your IDE and cut the nav and anchor

selectors. Cut and Paste the nav and anchor element from

default.css into nav.css:

nav {

 background:skyblue;

}

a {

 display:inline-block;

 width:100%;

 background:hotpink

}

522-MA-18 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 2.1:
Styling Container Geometry
(continued)

27.  Within your new nav.css document, change the background color

of the anchor selector to transparent (or simply remove the old

background property:value). This will allow the nav element

background to show through the anchors.

28.  Save nav.css and default.css, and preview index.html in a

browser:

 Does your result resemble the above screenshot?

Answer: No! We fell victim to a common issue when modularizing

our CSS code—we forgot to add the link referencing our new

external nav.css file.

29.  Return to index.html in your IDE and add the missing external

stylesheet reference:

<link rel="stylesheet" href="css/reset.css" />

<link rel="stylesheet" href="css/default.css" />

<link rel="stylesheet" href="css/nav.css" />

<link rel="stylesheet" href="css/feature.css" />

522-MA-19 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 2.1:
Styling Container Geometry

(continued)

30.  Save index.html and preview in a browser. Your nav element

should now have the missing skyblue background, but the pizza

gradient glow isn’t showing through.

31.  From Chrome, press the Colorzilla menu and select the CSS

Gradient Generator.

32.  From the Presets swatch library, select the second gradient from the

top right as in the screenshot below:

33.  With the transparent black preset selected, press the top left opacity

stop in the color stop mixer below the presets:

522-MA-20 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 2.1:
Styling Container Geometry
(continued)

34.  Just below in the Stops options, change the opacity to 100% using

the pop-out slider:

35.  Copy the code for the gradient you just selected from the CSS pane.

Switch back to your IDE and nav.css. Paste the background from

the CSS Gradient Generator on top of the background rule within the

nav selector (replace the old background property with the pasted

rule).

 Note—your generated BG will look slightly different but the

effect should look roughly the same—it doesn’t have to be a perfect

match!

nav {

 /* Permalink - use to edit and share this gradient:

http://colorzilla.com/gradient-editor/#000000+0,000000+100&1+0,0+100 */

 background: -moz-linear-gradient(top, rgba(0,0,0,1) 0%, rgba(0,0,0,0) 100%);

/* FF3.6-15 */

 background: -webkit-linear-gradient(top, rgba(0,0,0,1) 0%,rgba(0,0,0,0)

100%); /* Chrome10-25,Safari5.1-6 */

 background: linear-gradient(to bottom, rgba(0,0,0,1) 0%,rgba(0,0,0,0) 100%);

/* W3C, IE10+, FF16+, Chrome26+, Opera12+, Safari7+ */

 filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#000000',

endColorstr='#00000000',GradientType=0); /* IE6-9 */

 width:100%;

}

522-MA-21 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 2.1:
Styling Container Geometry

(continued)

36.  Save nav.css and preview index.html in your browser:

 Congratulations! You have modularized your CSS into

external stylesheets that will make managing and testing your

code much easier, and harmonized the box model between all

browsers with a style reset. We are getting closer to achieving

the look in the finished case study, but much work remains.

Th is i s t he en d of t he exerci se.

522-MA-22 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

522-MA-23 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.1:
Styling Content, Part 1

Overview

In this exercise, we will leverage more advanced selectors to avoid additional
DOM pollution when making selections for style. Screenshots taken for this
exercise are in 910px viewport width.

Part 1: Preparing a 3-column layout

1.  Open the starting point for Ex 3.1 in your browser first, followed by

your IDE. You may wish to close previous exercise files. This is

where we left off after Ex 2.1:

C:\inetpub\wwwroot\pizzatree\Ex\Ex3.1\index.html

2.  Open the CSS files referenced in the <link> element within your

IDE:

C:\inetpub\wwwroot\pizzatree\Ex\Ex3.1\css\default.css

C:\inetpub\wwwroot\pizzatree\Ex\Ex3.1\css\nav.css

C:\inetpub\wwwroot\pizzatree\Ex\Ex3.1\css\feature.css

3.  Within the /css folder of Ex3.1, create the following new CSS

document:

specials.css

4.  Switch to index.html in your IDE and add the link for this new

stylesheet:

<link rel="stylesheet" href="css/nav.css" />

<link rel="stylesheet" href="css/feature.css" />

<link rel="stylesheet" href="css/specials.css" />

522-MA-24 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.1:
Styling Content, Part 1
(continued)

5.  Switch to default.css in your IDE and cut the style for the section

selector. Switch to the new specials.css document you created

in Step 3, and paste the section selector you just copied in this

empty file.

6.  Change the height in the section selector from 120px to 180px. We

added some more toppings to our specials last night, but they didn’t

fit. Adding to the px height is not an ideal solution—we’ll fix this with

flexbox later.

7.  Save all open files and test index.html in your browser:

8.  Our finished case study displays the specials in a single row. We

offer three specials, so switch back to your IDE and change the width

of each section selector in specials.css to 33%. Don’t worry

about the missing 1% for now.

9.  Save specials.css and test index.html in your browser.

 Why aren’t the sections in a single row now that they are only

33% of viewport width?

522-MA-25 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.1:
Styling Content, Part 1

(continued)

Answer: The Meyer reset converted sections to block-level

elements, which have a line break before and after.

10.  Switch back to your IDE and specials.css. Change the display

property of the section selector to inline-block (not just inline or

our width value won’t be respected!):

section {

 height:180px;

 background:yellowgreen;

 width:33%;

 display:inline-block;

}

11.  Save specials.css and test index.html in your browser:

522-MA-26 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.1:
Styling Content, Part 1
(continued)

12.  CSS has a wonderful property: vertical-align. It almost never

works as intended, which has led to numerous additions to CSS

such as flexbox and grid. In this case however, vertical-align to

the rescue!

Switch back to your IDE and specials.css and add the

vertical-align property with a value of top:

section {

 height:180px;

 background:yellowgreen;

 width:33%;

 display:inline-block;

 vertical-align:top;

}

13.  Save specials.css and test index.html in your browser:

14.  Remember that missing 1%? Let’s assign it to the middle special,

which happens to the second section element on the page. Return to

your IDE and specials.css, and after the section selector,

create a selector for the second section that changes the width from

33% to 34%:

section:nth-of-type(2) {

 width:34%;

}

522-MA-27 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.1:
Styling Content, Part 1

(continued)

15.  Save specials.css and test index.html in your browser:

This was not the desired effect! By setting the combined width of

child elements to 100%, there isn’t enough room to display within the

parent article element, despite the Meyer Reset having eliminated all

margins, borders, and padding. Using more advanced positioning

techniques will solve this problem. You were asked to attempt this fix

as you are likely to run into this in your professional careers and now

you know what not to attempt.

For the curious, relative units of measure such as % accept decimal

values, and both 33.1% and 33.2% will get you closer to a solution,

but 33.3% will wrap the third section.

16.  Switch back to your IDE and specials.css and remove the width

property from the second section selector. Keep the selector: we

will use this later.

17.  Fix the text touching the edge of the specials containers by assigning

8px of padding around all edges to all specials:

section {

 ...

 vertical-align:top;

 padding:8px;

}

522-MA-28 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.1:
Styling Content, Part 1
(continued)

18.  Set the background of the containing article to the same green

assigned to sections (add an article selector), and the illusion of

100% width is complete:

article {

 background:yellowgreen;

}

19.  Add the red border from the completed case study to the right edge

of the first two sections, and not the last section. There are a few

different ways to accomplish this with selectors, here is but one

solution:

section:not(:last-of-type) {

 border-right:1px dotted red;

}

20.  Save specials.css and test index.html in your browser:

Part 2. Creating a tooltip via callout

21.  Switch over to index.html in your IDE. Near line 20, find the Menu

list item, and after the <a> element, add a element for a

callout as in the following:

Our MenuNow

with gluten-free RWD!

522-MA-29 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.1:
Styling Content, Part 1

(continued)

22.  Switch back to default.css in your IDE and start styling the

callout as per the case study. We require a green border, black

background, white text, and additional styling to create the callout:

.callout {

 width:200px;

 color:white;

 background: black;

 border: 2px solid lawngreen;

 border-radius:12px;

 padding:10px;

}

23.  Save all open files and preview index.html in your browser:

24.  Switch back to your IDE and nav.css and add a shared selector for

:before and :after on the .callout class. This selector will

create a pseudo element border style for the callout tail by creating

the illusion of a triangle:

.callout:before, .callout:after {

 border: solid transparent;

 content: "";

}

522-MA-30 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.1:
Styling Content, Part 1
(continued)

25.  Continue by individually styling the :before and :after pseudo

selectors, making the green border (triangle) slightly thicker than the

black border (triangle) for the appearance of a green border around

the entire callout pseudo element:

.callout:before {

 border-width: 17px;

 border-bottom-color: lawngreen;

 margin-left: 11px;

}

.callout:after {

 border-width: 14px;

 border-bottom-color: black;

 margin-left: 14px;

}

26.  Save nav.css and preview index.html in your browser:

 We’re almost there! If only we could reliably position the

triangles created with :before and :after pseudo elements…

that’s coming up in the next chapter.

 Congratulations! You have completed the exercise.

Th is i s t he en d of t he exerci se.

522-MA-31 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.2:
Styling Content, Part 2

Overview

In this exercise, we will continue leveraging pseudo selectors and selector

chains, and deploy the calc() and filter() functions. Screenshots taken

for this exercise are in 910px viewport width.

Part 1: Preparing the login view

1.  Open the starting point for Ex 3.2 in both your browser first, followed

by your IDE. You may wish to close previous exercise files. We are

working on a new file, login.html:

C:\inetpub\wwwroot\pizzatree\Ex\Ex3.2\login.html

Working within login.html, add a link to a new CSS stylesheet:

<link rel="stylesheet" href="css/nav.css" />

<link rel="stylesheet" href="css/feature.css" />

<link rel="stylesheet" href="css/login.css" />

2.  Create this new CSS stylesheet within the /css folder of the Ex 3.2

project:

C:\inetpub\wwwroot\pizzatree\Ex\Ex3.2\css\login.css

522-MA-32 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.2:
Styling Content, Part 2
(continued)

3.  Open your new login.css stylesheet in your IDE. Before we can

calculate the horizontal and vertical centers for aligning our login

prompt, we need to setup some initial selectors for our form

elements: a div with an id of login to contain our form, a form,

some paragraphs containing form element pairs, and the label/input

pairs themselves.

Start by styling the <div id="login"> with the appropriate

selector within login.css. Set the height to 300px, the width to

250px and the margins to auto. Finish by adding a tomato, 4px, solid

border, and set the background color to white:

div#login {

 margin:auto;

 width:300px;

 height:250px;

 border:4px solid tomato

}

4.  Save login.css and preview login.html in your browser:

522-MA-33 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.2:
Styling Content, Part 2

(continued)

5.  There appears to be artificial vertical centering due to the height of

navigation elements. For now, return to login.css within your IDE

and within the #login selector set the position property value of the

login prompt to absolute and the top property to 0. This will help

illustrate the need for proper horizontal and vertical alignment

functions:

position:absolute;

top:0;

6.  Save login.css and preview login.html in your browser:

Note the footer has moved to just beneath the navigation menu and

is displayed underneath the login prompt. This is because our

position rule has removed the login prompt from the natural flow of

the linear layout, and DOM elements have filled in the space

previously occupied by the login prompt.

522-MA-34 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.2:
Styling Content, Part 2
(continued)

7.  Using the calc() function, set the login prompt to center both

horizontally and vertically by adjusting the top and left margin. Use

one-half the height and width we declared as part of the calc()

function (recall the space requirement on both side of the subtraction

operator):

margin-top:calc(50vh - 125px);

margin-left:calc(50vw - 150px);

8.  Save login.css and preview login.html in your browser:

9.  Switch back to login.css in your IDE and style the <p> element

containing the text "Please Login" to match the Case Study:

 Add the appropriate selector and set the background to tomato

 Add 10px of padding and after centering the text

 Set the font-size to 25% larger than default (1.25em or 125%):

div#login p:first-of-type {

 background:tomato;

 padding:10px;

 text-align:center;

 font-size:1.25em;

}

522-MA-35 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.2:
Styling Content, Part 2

(continued)

10.  Our (completed) Case Study login prompt has the following

appearance:

11.  Our login prompt will center in our screen regardless of content

thanks to the calc() function. We can prove this by removing the

nav from our current exercise to more closely resemble the

horizontal navigation geometry we will create later.

Open login.html in your IDE and comment out the <nav>

element using HTML comments:

<!--

 <nav>…..</nav>

-->

522-MA-36 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.2:
Styling Content, Part 2
(continued)

12.  Save all open files in your IDE and preview login.html in your

browser. Even without the <nav> element, your login prompt centers

to expectations:

Part 2

13.  CSS3 functions are wonderful shortcuts to amazing results in the

viewport. We will now leverage the filter() function by applying a

black and white filter to the image of our young Mario Brothers in

Milan.

Switch back to your IDE and open index.html from the Ex 3.2

project folder:

C:\inetpub\wwwroot\pizzatree\Ex\Ex3.2\index.html

522-MA-37 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.2:
Styling Content, Part 2

(continued)

14.  Scroll down to the text describing the hard-working Mario Brothers in

the second article at around line 72. Between the second and third

sentence, add the image of our two young superstar chefs. The

image is located in the /img folder:

C:\inetpub\wwwroot\pizzatree\Ex\Ex3.2\img\mario_brothers.jpg

The code to add the image:
... established a unique blend of trendy factory-

style eateries with pizza made from only the

freshest, local ingredients. <img

src="img/mario_brothers.jpg" />Enjoying a slice of

Pizza Tree pizza pie is required to pass the exam

on Friday.

15.  Save index.html and preview the same file in your browser:

16.  We don’t have to re-render this image in Photoshop to achieve our

desired black and white appearance—CSS3 Functions will do this for

us.

Open default.css located within the /css folder of the Ex 3.2

project:

C:\inetpub\wwwroot\pizzatree\Ex\Ex3.2\css\default.css

522-MA-38 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.2:
Styling Content, Part 2
(continued)

17.  Add a selector for our new image placed in index.html and add a

filter function that sets a grayscale value of 100%:

img {

 filter:grayscale(100%)

}

18.  Save default.css and preview index.html in your browser:

Well done! The Mario Brothers have just travelled back in time—but

OOPS! Our Pizza Tree logo also happens to be an image, so it too

inherited the grayscale filter.

19.  Switch back to your IDE and default.css and fix the application of

the grayscale filter to the Pizza Tree image by setting a more specific

selector to the image selector we created in Step 18 that only targets

the Mario Brothers image. There is no single solution, here is but one

example:

p img:nth-of-type(1) {

 filter:grayscale(100%)

}

522-MA-39 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.2:
Styling Content, Part 2

(continued)

20.  Save default.css and preview index.html in your browser:

Part 3

21.  Selector chaining, as we saw in our last exercise, is a great way to

condense rules for quick results in the viewport.

Switch back to your IDE and default.css. Style the Washington

Special toppings so that only Apples and Blue Raspberries have a

white list-item background, without polluting the DOM markup with

classes and IDs. You will need to create a selector that skips the first

and last list items, and doesn’t accidentally style the list-items within

the <nav> item, nor does it style the list-items within the other

Ottawa and London specials:

section:first-child li:not(:first-of-type):not(:last-of-type) {

 background:white;

}

522-MA-40 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 3.2:
Styling Content, Part 2
(continued)

22.  Save default.css and preview index.html in your browser:

23.  Switch back to your IDE and default.css and continue styling the

London Special so that only the last four toppings have a skyblue

background. You will need to use a range selector chain and make

sure only London is selected:

section:last-child li:nth-child(n+3):nth-child(-n+6) {

 background:skyblue;

}

24.  Save default.css and preview index.html in your browser:

 Congratulations! You have used some advanced pseudo

selector chains to select only the elements required for style

without polluting the DOM markup with unnecessary classes

and ids, and leveraged native CSS3 calc() and filter()

functions to achieve dynamic viewport results.

Th is i s t he en d of t he exerci se.

522-MA-41 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.1:
Positioning Containers

Overview

In this exercise, we will continue styling our navigation menu and upgrade our
Specials to use flexbox vs the percentages we used in Hands-On Exercise
3.1. A small Pizza Tree logo has been added as the first list item that will
serve as the mobile view header logo, and an HTML entity has been added
as the last list item that will serve as the mobile menu trigger. Screenshots
taken for this Exercise are in 910px viewport width.

Part 1: Re-structing the rendered navigation menu

1.  Open the following files in your IDE. You may wish to close previous

exercise files.

C:\inetpub\wwwroot\pizzatree\Ex\Ex4.1\index.html

C:\inetpub\wwwroot\pizzatree\Ex\Ex4.1\css\nav.css

2.  In index.html, temporarily disable the callout we created in a

previous exercise by commenting out the element within the

third list item near line 21:

Our Menu

<!--Now with gluten-free RWD!-->

522-MA-42 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.1:
Positioning Containers
(continued)

3.  Switch to nav.css. Add a selector that floats the list items within the

navigation menu to the left and provides 10px of left and right

padding to prevent the words from floating into each other. Make

your selector specific to avoid clashing with other list items. Add this

selector under the first nav selector that terminates near line 8:

nav ul li {

 float:left;

 padding:0 10px;

}

4.  Our goal is to replicate the transparent gradient background from the

finished Case Study, which has a height of 4em. Our nav already

has this background, which we created previously, but default user-

agent styles mean the list items are only as tall as the unordered list,

which in turn is only as tall as the nav. Style the unordered list to a

height of 4em by adding a new unordered list selector. As a best

practice, place less-specific styles before more-specific styles to

make your code easier to read:

nav ul {

 height:4em;

}

 Yes, we could have added a height property to the nav

selector, but we’ll need a ul selector later in the exercise, so we

added it here with the same result.

522-MA-43 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.1:
Positioning Containers

(continued)

5.  Style the navigation anchors so we can see them. Set the height to

match the height of the element and the width to 100% so the

<a> elements fill the list items. <a> elements are inline elements by

default, so we cannot assign dimension without converting them to

block-level elements:

nav ul li a {

 display:inline-block;

 width:100%;

 height:4em;

 color:tomato;

}

6.  Save nav.css and preview index.html in your browser:

Now that our <a> elements are set to inline-block, they can have

dimension, which means our cursor will switch to a hand icon when

any portion of the anchor is hovered over, not just the text. The

anchors are now the same size as the list items, minus any padding

within the list items. Move your cursor directly under the navigation

link text to see this in action.

Press <F><12> in your browser to pop open the debugger and

inspect the anchor elements to get a true visualization of their

dimension.

522-MA-44 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.1:
Positioning Containers
(continued)

7.  We don’t want to see the Pizza Tree logo or the menu logo when

browsing on desktop devices, so disable them by setting their display

properties to none using an appropriate pseudo selector for the list

items in question (chain a :not selector or use a group selector):

nav ul li:last-of-type, nav ul li:first-of-type {

 display:none;

}

8.  It’s time to fix the borders of our callout using absolute positioning.

Switch back to index.html and remove the comments you added

in Step 2.

9.  Save index.html and preview in a browser:

Now that our menu items are floating left, the callout is pushing

subsequent menu items to the right.

10.  Switch back to your IDE and nav.css. Prepend to the .callout

selector properties for absolute position: 3.5em from the top, and

60px from the left:

.callout {

 position: absolute;

 top:3.5em;

 left:60px;

 …

}

522-MA-45 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.1:
Positioning Containers

(continued)

11.  Save nav.css and preview index.html. The callout position

should have changed, which directly affected the position of the

pseudo element callout tails:

12.  Switch back to your IDE and nav.css. Prepend the same absolute

position to the .callout:before, .callout:after pseudo element selector,

and set the bottom to 100% and left to 50%:

.callout:before, .callout:after {

 position: absolute;

 bottom: 100%;

 left: 25%;

 border: solid transparent;

 content: "";

}

13.  Save nav.css and preview index.html in your browser to reveal

the completed callout:

Part 2: Restructuring Specials with flexbox

14.  Return to your IDE and open specials.css from the /css folder

of the Ex 4.1 project:

C:\inetpub\wwwroot\pizzatree\Ex\Ex4.1\css\specials.css

522-MA-46 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.1:
Positioning Containers
(continued)

15.  Within specials.css, set the article selector position to relative to

serve as an anchor for descendant element positioning, and set the

display to flex:

article#specials {

 background:yellowgreen;

 position:relative;

 display:flex;

}

16.  Save specials.css and preview index.html in your browser to

see the proper way to create columns with CSS (you did a great job

in a previous exercise but now you know how to convert multi-

column layouts to flexbox!):

17.  We have three child <section> elements, each representing a

Special, and each requiring a flex property to occupy the requisite

space. Return to specials.css, and append to the section

selector properties to set flex to 1 and center the text:

section {

 background:yellowgreen;

 padding:8px;

 text-align:center;

 flex:1;

}

522-MA-47 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.1:
Positioning Containers

(continued)

18.  Save default.css and preview index.html in your browser:

19.  Using your browser debugger, inspect each section to verify they are

all the same height thanks to flexbox.

20.  Flexible child elements can have their viewport display order updated

by CSS. Return to specials.css in your IDE and, at the end of

your file, add a selector that targets the first Special and sets its

display order to 3.

This will have the effect of making the first Special in the linear layout

the last Special in the rendered DOM. Don’t forget to update the right

border of your new last Special by giving it a left border instead!

section:first-of-type {

 order:3;

 border-right:none;

 border-left:1px solid red;

}

522-MA-48 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.1:
Positioning Containers
(continued)

21.  Save specials.css and preview index.html in your browser:

OOPS—now there is a 2px dotted border between the London and

Washington Specials. The DOM re-order via flexbox has broken our

border logic, which was not smart enough to adjust for the new DOM

order on the fly.

22.  Fix the double border by removing the pseudo selector decorator

from the section selector, as we are no longer required to apply the

right border to everything but the last element:

section { /* removed :not(:last-of-type) */

 border-right:1px dotted red;

}

23.  Save specials.css and preview index.html in your browser:

522-MA-49 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.1:
Positioning Containers

(continued)

 Congratulations! Creating multi-column, equal-height

layouts has never been easier thanks to the addition of flexbox

to CSS3.

 Have you tested your solution in different viewports by varying

the width of your browser? Yuck—it looks terrible in mobile (narrow)

viewports! We will address responsive issues next.

Th is i s t he en d of t he exerci se.

522-MA-50 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

522-MA-51 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.2:
Positioning Containers

Overview

In this exercise, we will make our work responsive—our website needs to
adapt to varying viewport widths. Note that some of your starting CSS files for
this exercise have been slightly updated to catch up to this point in our case
study for brevity.

Screenshots taken for this exercise are in 910px viewport width for desktop
view and 420px viewport width for mobile view.

Part 1: Responsive navigation

1.  Open the following files in your IDE:

C:\inetpub\wwwroot\pizzatree\Ex\Ex4.2\index.html

C:\inetpub\wwwroot\pizzatree\Ex\Ex4.2\css\nav.css

C:\inetpub\wwwroot\pizzatree\Ex\Ex4.2\css\specials.css

2.  Create a new stylesheet named responsive.css within the /css

folder of your Ex 4.2 project files:

C:\inetpub\wwwroot\pizzatree\Ex\Ex4.2\css\responsive.css

3.  Add the appropriate link to index.html for this new stylesheet:

<link rel="stylesheet" href="css/testimonials.css" />

<link rel="stylesheet" href="css/responsive.css" />

<title>Pizza Tree - Badda Boom!</title>

522-MA-52 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.2:
Positioning Containers
(continued)

4.  Our index.html document needs to adapt to different viewports

but following instructions on how to open on mobile devices. Directly

after the first <meta> element near line 4, add a <meta> element

with a viewport name attribute value and content set to adapt to the

device width at an initial scale of 100%:

<meta name="viewport" content="width=device-width, initial-scale=1">

5.  Open your new responsive.css stylesheet. We will be adding two

@media queries to fit the collapse requirements of our Case Study.

Always start with the smallest viewport and work your way up to the

largest viewport in your responsive stylesheet as part of a mobile first

strategy.

Add an @media query for screens that will apply to viewports less

than or equal to 760px wide:

@media only screen and (max-width:760px) { }

6.  Add a selector within your new @media query for an id of top that

sets the background size to cover the available width and height,

maintaining perspective and only constraining when both have

reached 100%. Adjust the image to be horizontally centered and

raised by 250px:

#top {

 background-size:cover;

 background-position:center -250px;

}

522-MA-53 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.2:
Positioning Containers

(continued)

7.  Hide the callout in mobile view (within the @media query):

.callout {

 display:none;

}

8.  Our navigation menu should not scroll out of view on mobile devices,

so fix it in place with the appropriate display property:

nav {

 position:fixed;

}

9.  Save all open files and preview index.html in your browser.

Narrow your viewport to less than 760px and scroll to ensure your

menu is now “sticky”:

522-MA-54 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.2:
Positioning Containers
(continued)

10.  Return to responsive.css and set the last list item (our menu

toggle) to display in our mobile viewport, and anchor it to the top right

of our screen, letting the <nav> element background show through:

nav ul li:last-of-type {

 display:block;

 position:absolute;

 right:0; top:0;

 background:transparent;

}

11.  On mobile devices, we want the Pizza Tree icon to be our corporate

brand on the top left of our navigation. Add a mobile selector for the

first list item and change its display from the previously assigned

none to block. Anchor it to the top left, and let the <nav> element

background show through:

nav ul li:first-of-type {

 display:block;

 position:absolute;

 left:0; top:0;

 background:transparent;

}

522-MA-55 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.2:
Positioning Containers

(continued)

12.  Save your work in responsive.css and preview index.html in

your browser, making sure you test different viewport widths:

13.  Our navigation links are still showing as floated list items in mobile

view, which is not the desired behavior. Add a selector for all list

items but the first and last to reset the float to none and add a

translucent background to accompany some extra left and right

padding of 40px:

nav li:not(:first-of-type):not(:last-of-type) {

 float:none;

 background:rgba(0,0,0,.8);

 padding:0 40px;

}

522-MA-56 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.2:
Positioning Containers
(continued)

14.  Save and preview index.html in your browser:

15.  This menu will eventually only be displayed when the menu button is

toggled, so for now, turn the Pizza Tree logo off on mobile until we

have finished styling our menu:

nav ul li:first-of-type {

 display:none;

 position:absolute…

16.  Add a pseudo selector on list items in the hover state that sets the

background color to tomato. Be sure to select only menu items and

not the menu toggle!

nav li:not(:last-of-type):hover {

 background:tomato;

}

522-MA-57 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.2:
Positioning Containers

(continued)

17.  Save your work and preview index.html in your browser, being

sure to mouse over menu items in mobile view:

18.  The hover effect has neutralized our menu text. Switch back to your

IDE and responsive.css, and fix this by changing the menu text

color on hover. This is easier said than done; you are changing the

anchor color, not the list item color, which means adding another

selector in hover state:

nav li:not(:last-of-type):hover a {

 color:black;

}

522-MA-58 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.2:
Positioning Containers
(continued)

Part 2: Responsive flexbox

19.  Our Specials are currently flexing in three columns, but that doesn’t

look good on mobile devices as there isn’t enough room on smaller

screens. Reset the mobile flex rules for our <div> element with an

id of specials to wrap rows by adding a selector:

#specials {

 flex-flow:row wrap;

}

20.  The child <div> elements within each Specials need to be

converted to 100% wide flex items, and since we’re stacking our

Specials in mobile view, swap the right border for the bottom border

in your new div selector:

#specials div {

 text-align:center;

 flex:1 100%;

 border-bottom:1px dotted red;

}

522-MA-59 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.2:
Positioning Containers

(continued)

21.  Save and preview index.html in your browser:

22.  Once we have our menu toggle working, the focal point of the mobile

view will be a delicious pizza and the Pizza Tree title image in our

first view. It is not, however, currently visible, nor does it respond to

larger viewports.

Disable the navigation menu by updating its display to none within

responsive.css in your IDE:

nav {

 position:fixed;

 display:none;

}

522-MA-60 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.2:
Positioning Containers
(continued)

23.  Add selectors for the heading level 2 and 3 elements in the feature

div to change size based on the width of the viewport:

div#feature h2 {

 font-size:5vw

}

div#feature h3 {

 font-size:4vw

}

24.  Add a selector that shows off our logo by setting the size of our main

Pizza Tree image to 75% of its full width and applies a CSS3 filter()

function to drop a lawngreen shadow—that’s right, we’re dropping a

shadow from a transparent image:

div#feature img {

 width:75%;

 filter: drop-shadow(6px 6px 16px lawngreen);

}

25.  Move the Featured Content down by adding a selector for our

<div id=”feature”> element (before all other #feature

selectors) with a top padding property of 100px:

div#feature {

 position:relative;

 top:100px;

}

522-MA-61 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 4.2:
Positioning Containers

(continued)

26.  Save your work and preview index.html in your browser:

 Congratulations! Your menu and homepage is now

responsive. We still have to make the Menu and Order form

responsive, and our menu needs help from JavaScript to be

truly responsive, but this will be accomplished in coming

chapters. Updating the Typography of our Case Study comes

first.

Th is i s t he en d of t he exerci se.

522-MA-62 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

522-MA-63 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 5.1:
Web Typography

Overview

In this exercise, we will initiate typography norms across our case study by
leveraging Type CDNs. We will also take advantage of the many type and
font properties to customize the look and feel of our navigation, specials and
testimonials.

Screenshots taken for this Exercise are in 910px viewport width for desktop
view, 420px viewport width for mobile view.

Part 1: General Case Study Fonts

1.  Open the following files in your IDE:

C:\inetpub\wwwroot\pizzatree\Ex\Ex5.1\index.html

C:\inetpub\wwwroot\pizzatree\Ex\Ex5.1\css\nav.css

C:\inetpub\wwwroot\pizzatree\Ex\Ex5.1\css\responsive.css

2.  Within index.html and directly after the <link> element that

assigns our favicon near line 6, add stylesheet links for Lato and

Lemonada (available through Google CDN) and the Font Awesome

icon stylesheet (available as both CDN and direct file download—we

have opted for the download for variety):

<link rel="stylesheet"

href="https://fonts.googleapis.com/css?family=Lemonada" />

<link rel="stylesheet"

href="https://fonts.googleapis.com/css?family=Lato" />

<link rel="stylesheet"

href="css/font-awesome-4.7.0/css/font-awesome.css" />

522-MA-64 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 5.1:
Web Typography
(continued)

3.  Switch to nav.css in your IDE and add a font-family property to the

nav ul li a contextual selector near line 21 that uses the

Lemonada font and provides a fallback to cursive:

font-family:Lemonada, cursive;

4.  Save all open files and preview index.html in a browser to ensure

the Lemonada font is loading:

5.  Switch back to your IDE and nav.css and within the same nav ul

li a contextual selector, style the text to appear with the horizontal

center by matching the line-height to the element height, centering

the text, and removing the underline:

line-height:4em;

text-align:center;

text-decoration:none;

522-MA-65 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 5.1:
Web Typography

(continued)

6.  The screenshot in Step 4 shows the callout is not quite pointing to

the Our Menu text—fix this by adjusting the callout left position in the

:before and :after grouped pseudo selector near line 41 of

default.css—you’ll have to open this file from the /css folder in

the Ex 5.1 project files and edit it appropriately (try 25% but this is

splitting hairs):

.callout:before, .callout:after {

position: absolute;

bottom: 100%;

 left: 25%;

 border: solid transparent;

 content: "";

}

7.  Save all open files and preview index.html in your browser, taking

note of the active mouse geometry of your <a> elements within the

navigation menu:

522-MA-66 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 5.1:
Web Typography
(continued)

8.  Now we’ll add icons from the Font Awesome repository. Switch back

to your IDE and index.html. For each list item in the navigation

menu except the first and last ones, add <i> elements with classes

that map to Font Awesome CSS entities using the class fa for every

class, along with a custom icon class unique to each element:

 <i class="fa fa-home"></i>Pizza Tree

 <i class="fa fa-list-alt"></i>Our Menu

 Now with gluten-free RWD!

 <i class="fa fa-shopping-cart"></i>Order

 <i class="fa fa-podcast"></i>Demos

 <i class="fa fa-key"></i>Do Nows

 <i class="fa fa-mortar-board"></i>Exercises

522-MA-67 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 5.1:
Web Typography

(continued)

9.  Save your work and preview index.html in a browser:

10.  Switch back to your IDE and nav.css and change the new icon

color to white. Give each icon some right padding to avoid the

crushed effect with the navigation menu text:

nav ul li a i {

 color:snow;

 padding:0 4px 0 0

}

11.  Finally, change the callout typeface (within default.css) to Lato,

align the text within the callout to the center, and change the font-

size to 1.2em, as Lato is considerably smaller than the default font

size:

.callout {

 ...padding:10px;

 font-family:Lato;

 font-size:1.2em;

 line-height:1.2em;

 text-align:center;

}

12.  Switch to responsive.css and find the nav selector. Remove

the property that is hiding the navigation menu from mobile view

(display:none).

522-MA-68 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 5.1:
Web Typography
(continued)

13.  Under the last nav selector near line 34, add another nav selector

for child anchors (be specific) that left-justifies the text:

nav ul li a {

 text-align:left;

}

14.  Save all open files and preview index.html in your browser in both

viewports:

522-MA-69 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 5.1:
Web Typography

(continued)

Part 2: Styling the Feature and Specials Text

15.  Switch back to your IDE and open the feature.css stylesheet.

Add a selector that targets level 3 headings. Add 40px to the top

padding, set the font-size to 4vw, and put a white text-shadow of 3px

on all four sides:

div#feature h3 {

 padding-top:40px;

 font-size:3vw;

 text-shadow:3px 3px 3px white,

 -3px 3px 3px white,

 3px -3px 3px white,

 -3px -3px 3px white;

}

16.  Open specials.css and add a new selector at the bottom of the

stylesheet. Style the level 3 headings with a Capitalized Lemonada

font (add a cursive fallback), set the font size to 1.5em, add a 1px

white drop shadow to the bottom right, and set the white space

property to pre-wrap, which will create a line break in the viewport

where a soft break exists in the HTML code:

#specials div h3 {

 font-family:Lemonada, cursive;

 font-size:1.5em;

 white-space: pre-wrap;

 text-shadow:1px 1px 2px white;

 text-transform:capitalize;

}

522-MA-70 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 5.1:
Web Typography
(continued)

17.  Save all open files and preview index.html in a browser:

18.  Return to your IDE and in specials.css, add a new contextual

selector to style the unordered list with left justification, top and

bottom padding of 20px, a 20px bottom margin, and a font-size of

1.25em:

#specials div ul {

 padding:20px 0;

 text-align:left;

 width:12em;

 margin:0 auto 20px auto;

 font-size:1.25em

}

19.  Style the star icons within <i> elements gold with a black drop

shadow to make them stand out:

#specials div i {

 padding-right:4px;

 color:goldenrod;

 text-shadow:1px 1px 1px black;

}

522-MA-71 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 5.1:
Web Typography

(continued)

20.  Save specials.css and preview index.html in a browser:

Note the shopping carts in the order buttons inherited the same

goldenrod color!

21.  Our buttons don’t look right—flexbox has created equal height

columns, but the buttons aren’t aligned on the same axis. Fix this by

switching back to your IDE and within specials.css, push them to

the bottom of each Special by styling a button selector with absolute

position, 0px from the bottom:

#specials button {

 position:absolute;

 bottom:0;

}

522-MA-72 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 5.1:
Web Typography
(continued)

22.  Save and preview index.htm in a browser:

This looks much better, but the buttons are no longer horizontally

centered within each Special. Absolute position elements are

centered from their left edge if no left or right property is assigned.

We can calculate how far to push the button over with a CSS3

function.

23.  Switch back to your IDE and within specials.css, update the

button selector to add a right property that uses the calc()

function to subtract 2.75em from 50% of the parent element width:

#specials button {

 position:absolute;

 bottom:0;

 right:calc(50% - 2.75em);

}

24.  Save and preview index.html in a browser:

522-MA-73 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 5.1:
Web Typography

(continued)

25.  Moving along to the testimonials, switch back to your IDE and open

testimonials.css. Each aside in the HTML DOM contains an

<i class=”fa fa-quote-left”> element for styling with a

Font-Awesome “Quote” icon. Style this icon for effect by making it

much larger (4em) than the testimonial text. Make it transparent by

adding an rgba color set to 0.2 opacity to the new selector:

aside i.fa-quote-left {

 font-size: 4em;

 color:rgba(0,0,0,.2)

}

26.  Update the paragraph text for the testimonial with a paragraph

selector that uses the same Lemonada font-family used previously:

aside p {

 font-family: Lemonada, cursive

}

27.  Add a special touch to the first letter of each <p> element within the

Company History by changing their font size to 2.25em, the color to

white, and a black text drop shadow of 2px:

aside p:first-letter {

 font-size:2.25em;

 color:white;

 text-shadow:2px 2px 2px black;

}

522-MA-74 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 5.1:
Web Typography
(continued)

28.  Finally, move the testimonial text into the blockquote icon by nudging

the top margin -30px and add 20px to the left margin. Finish styling

the text by setting the font size to 1.75em:

blockquote {

 margin:-30px 0 0 20px;

 font-size:1.75em;

}

29.  Save all open files and preview index.html in your browser in both

viewports:

30.  We need to clean up the mobile testimonial view. Switch back to

responsive.css in your IDE and add a selector for

#testimonials that assigns a flex flow property that wraps rows,

much like we did for our specials:

#testimonials {

 flex-flow:row wrap;

}

522-MA-75 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 5.1:
Web Typography

(continued)

31.  Sandwich the Company History between two testimonials in mobile

single-column view by changing the display order of our flexbox

items as in the following code:

aside:nth-of-type(1) {

 order:2;

 flex:1 100%;

 line-height:1.5em;

}

aside:nth-of-type(2) {

 order:1;

 flex:1 100%

}

aside:nth-of-type(3) {

 order:3;

 flex:1 100%

}

32.  Save and preview index.html in your mobile browser viewport:

522-MA-76 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 5.1:
Web Typography
(continued)

 Congratulations! Your homepage typography is now

completely custom and responsive. It’s time to move on to

styling forms and data tables in our next chapter.

Th is i s t he en d of t he exerci se.

522-MA-77 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.1:
Building Accessible Forms

Overview

In this exercise, we will style the order form. Our starting point is a valid
HTML5 form with everything required to support an accessibility strategy, but
it has no physical formatting and oddly enough looks much better in linear
layout as seen by a screen reader than it does rendered in a modern
browser. We will fix this and make the form responsive to prevent it collapsing
into a mess in mobile viewports.

Screenshots taken for this Exercise are in 1200px viewport width for desktop
view, 420px viewport width for mobile view.

Part 1: Desktop viewport

1.  Open the following files in your IDE and Chrome (we need Chrome

for this exercise):

C:\inetpub\wwwroot\pizzatree\Ex\Ex6.1\order.html

2.  In Chrome, after admiring the beauty of our order form, use the Web

Developer extension to disable all styles. What you are looking at is

an accessible form:

522-MA-78 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.1:
Building Accessible Forms
(continued)

 The <fieldset> element provides a container element for

grouped <label> and <input> elements.

Each <fieldset> element has an accompanying <legend>

element to describe the context of the grouped <label> and

<input> elements.

All <input> elements have sibling <label> elements, which

provide captions for data entry. All <label> elements feature a

for="" attribute, which matches the id="" attribute of the

<input>.

3.  Switch back to your IDE and in the Ex 6.1 project files, create a new

stylesheet for our form:

C:\inetpub\wwwroot\pizzatree\Ex\Ex6.1\css\form.css

4.  Within order.html add a stylesheet link for our new form

stylesheet, directly before the responsive.css stylesheet link tag:

<link rel="stylesheet" href="css/form.css" />

522-MA-79 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.1:
Building Accessible Forms

(continued)

5.  Open your new form.css stylesheet in your IDE. We must first style

the <form> element to 1200px in width (this is an arbitrary number

explained in Step 18), left justification, and centered using the

automatic margins. Give your form a slightly transparent white

background (90% white should do nicely) and assign a 20px padding

for some breathing room:

form {

 text-align:left;

 width:1200px;

 margin:0 auto;

 background:rgba(255,255,255,.9);

 padding:20px;

}

6.  Next, style the fieldset margins as 20px top, 40px bottom, 10px each

for left and right, and add some padding of 20px. Create another

selector for the legends and use our Lemonada font with the usual

cursive fallback:

fieldset {

 margin:20px 10px 40px;

 font-family:Lemonada, cursive;

 padding:20px;

}

legend {

 font-family:Lemonada, cursive;

}

522-MA-80 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.1:
Building Accessible Forms
(continued)

7.  Save form.css and preview order.html in Chrome:

8.  There is too much white space. We can use that as a second column

for our for elements. We’ll use a <p> element as a physical container

for each <label>/<input> contextual element pairing, and ensure

two <p> elements can fit in the same row on desktop viewports.

Add a paragraph selector (specific to forms) that sets the width to

550px, and float to the left so we can wrap our odd numbered <p>

elements:

form p {

 width:550px;

 float:left;

}

9.  Save form.css and preview order.html in Chrome:

522-MA-81 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.1:
Building Accessible Forms

(continued)

10.  Switch back to your IDE and in form.css, add a group style that

floats all labels, inputs, selects, and textareas to the left:

p label, p input, p select, p textarea {

 float:left;

}

11.  Add another selector that clears the left edge of just the <label>

elements, and sets their width to 150px:

p label {

 width:150px;

 clear:left;

}

12.  Save your work and preview order.html in Chrome:

13.  Switch back to your IDE and form.css, and create a group style for

inputs, selects, and textareas that does several things to achieve the

look in the finished case study:

 Set the border to none

 Add a 1px skyblue bottom border

 Make the background transparent

 Assign 350px width

 Set the font size and line-height to 1em

522-MA-82 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.1:
Building Accessible Forms
(continued)

p input, p select, p textarea {

 border:none;

 border-bottom:1px solid skyblue;

 background:transparent;

 width: 325px;

 font-size:1em;

 line-height:1em;

}

14.  Save your work and preview order.html:

15.  Align the existing label selector text to the right, and give it some

right padding so it looks clean and clear, not crowded:

p label {

 width:150px;

 clear:left;

 text-align:right;

 padding-right:10px;

}

522-MA-83 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.1:
Building Accessible Forms

(continued)

16.  Finish our desktop viewport by adjusting the width of the checkboxes

to 30px. They currently share the <input> element width of 350px,

and checkboxes will center within any width, regardless of CSS text-

align property:

p input[type="checkbox"] {

 width:30px;

}

17.  Save your work and preview order.html in a browser:

522-MA-84 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.1:
Building Accessible Forms
(continued)

Part 2: Responsive mobile viewport

18.  Switch back to your IDE and open the responsive.css stylesheet

for this exercise. The Pizza Tree Executive Team has decided

anyone visiting on a tablet or smaller device should have the easiest

form experience; therefore, we will collapse our form at any

resolution under 1280px.

Create a new @media query under the existing that accomplishes

our goal. Within this new @media query, set the form width to 90%

with centered legend content:

@media only screen and (max-width:1280px) {

 form {

 width:90%

 }

 legend {

 text-align:center;

 }

}

19.  Our <p> elements have a fixed width for desktop viewports.

Re-assign them to relative (100%), and add a 20px bottom border to

help separate each label/input pair (add this and all remaining styles

in our new @media query):

form p {

 width:100%;

 margin-bottom:20px;

}

522-MA-85 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.1:
Building Accessible Forms

(continued)

20.  Save responsive.css and preview order.html:

21.  We need to correct alignments and relative element sizing. Add a

grouped selector that targets labels, inputs, textareas, and selects

and stops the desktop float, applies left justification, and sets the

width to 100%:

p label, p input, p textarea, p select {

 float:none;

 text-align:left;

 width:100%;

}

22.  Save and preview order.html in Chrome:

522-MA-86 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.1:
Building Accessible Forms
(continued)

23.  This looks much better, but scroll down to our toppings and we still

have some leftover desktop properties to overrule. The toppings

checkboxes are within <p class=”topping”> elements. Add a

new selector for labels within this element that floats and clears left,

sets the width to 55% and right-justifies text:

p.topping label {

 float:left;

 clear:left;

 width:55%;

 text-align:right;

}

24.  Line the checkboxes up with their respective labels by adding a

selector that floats the checkboxes left:

p.topping input {

 float:left;

}

25.  Save and preview orders.html in Chrome:

522-MA-87 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.1:
Building Accessible Forms

(continued)

26.  Switch back to your IDE and within form.css, style the buttons to

match their appearance in the finished case study. Only peek at the

finished selectors if you need help!

#order button {

 border-radius:8px;

 border-style:inset;

 padding:4px 20px;

 background:lawngreen;

 color:black;

 font-size:1em;

 position:relative;

 left:calc(100% - 10em)

}

#order button:hover {

 background:deepskyblue;

 cursor:pointer;

}

#order button:hover i {

 color:lawngreen

}

#order button[type="button"] {

 left:calc(100% - 7em)

}

 Congratulations! Your order form is both accessible and

responsive. We’ll style our menu data table in the next exercise.

Th is i s t he en d of t h e exerci se.

522-MA-88 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

522-MA-89 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.2:
Building Accessible Tables

Overview

In this exercise, we will style the menu table. Our starting point is a typical
HTML4 form created by developers that did not prioritize accessibility, and
our form predates responsive design, so it collapses into a giant unreadable
mess on mobile.

Screenshots taken for this Exercise are in 1200px viewport width for desktop
view and 420px viewport width for mobile view.

Part 1: Desktop viewport

1.  Open the following files in your IDE and Chrome:

C:\inetpub\wwwroot\pizzatree\Ex\Ex.6.2\menu.html

2.  In Chrome, use the Web Developer extension to disable all styles.

What you are looking at is a bare-bones HTML table:

3.  Switch back to your IDE and in the Ex 6.2 project files, create a new

stylesheet for our table:

C:\inetpub\wwwroot\pizzatree \Ex\Ex.6.2\css\table.css

522-MA-90 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.2:
Building Accessible Tables
(continued)

4.  Within menu.html add a stylesheet link for our new form stylesheet

before the link to responsive.css:

<link rel="stylesheet" href="css/table.css" />

5.  Switch back to table.css and create the base style for the table

element. Set the fixed maximum width to 1400px for non-mobile

displays, make the background white, and set the top and bottom

margins to 40px. Set the left and right margins to automatic, which

will center the table in larger viewports, and set the text to left-justify,

which will be inherited by child elements (the table cells):

table {

 width:1400px;

 background:white;

 margin:40px auto;

 text-align:left;

}

6.  Save all open files and refresh menu.html in Chrome:

While the table is now slightly more pleasant on desktops, work

remains to make the table not just accessible but responsive:

522-MA-91 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.2:
Building Accessible Tables

(continued)

7.  Switch back to your IDE and within menu.html, add a caption

element to help screen readers with context for this menu table. Add

your caption directly after the opening table element near line 45:

<table border="1">

 <caption>Our Menu</caption>

 <thead>

8.  Within table.css, style the new caption as well as table header

rows within the table header element with our Pizza Tree font:

caption, thead th {

 font-family:"Lemonada", cursive

}

9.  Style all <tr>, <td>, and <th> elements so they aren’t crunched

together. Add 20px of padding and assign a solid, 1px lightcoral

border:

tr, th, td {

 padding:20px;

 border:1px solid lightcoral

}

10.  Save all open files and refresh menu.html in Chrome:

Much better! Some zebra-striping would make text more visible

across columns, and the non-heading text is too small for comfort.

522-MA-92 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.2:
Building Accessible Tables
(continued)

11.  Switch back to your IDE and within table.css, zebra stripe the

table, being careful to only stripe the data rows and not the header

(and potentially a future footer):

tbody tr:nth-child(odd){

 background:tomato

}

12.  Style the text within the non-header data using the lato font, and

slightly increase the font size:

tbody {

 font-size:1.1em;

 font-family:lato

}

13.  Clarify the importance of the toppings as the key column by styling

the background color to lawngreen for the first cell in every row, and

apply a hover state to each row using the same background color:

tbody tr th, tbody tr:hover {

 background:lawngreen

}

14.  Save all open files and refresh menu.html in Chrome:

In this screenshot, the Extra Pepperoni row is in the hover state; any

cell within the row should trigger the background of the entire row.

522-MA-93 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.2:
Building Accessible Tables

(continued)

15.  Preview your menu table in mobile viewport at around 420px:

Yikes! Not only is this table not responsive, it’s still not fully

accessible.

16.  Switch back to your IDE and within menu.html, help screen readers

identify column headers by adding a column scope attribute to each

<th> element within the <thead> element:

<th scope="col">Topping</th>

<th scope="col">XL</th>

<th scope="col">XXL</th>…

17.  Still in menu.html, add a row scope attribute to each <th> element

within the <tbody> element:

<th scope="row">Pepperoni</th>

<td>Y</td>

<td>Y</td>…

522-MA-94 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.2:
Building Accessible Tables
(continued)

18.  Open responsive.css from the Ex6.2 /css folder, and with the

mobile media query near line 77, start styling our responsive table by

setting the width to 90%:

table {

 width:90%;

}

19.  We added padding to our desktop table earlier. We need to overrule

this. Reduce the 20px down to 4px:

tr, th, td {

 padding:4px;

}

20.  Save all open files and refresh menu.html in Chrome:

Despite the reduced padding and relative table width, there simply is

not enough room aesthetically on mobile to display more than a few

columns of data. We can fix this by converting our table to a single

column, without touching the HTML.

522-MA-95 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.2:
Building Accessible Tables

(continued)

21.  Remove the table header row that identifies the columns. We’re only

hiding with CSS; the original DOM is not being touched, which keeps

it accessible:

table thead {

 display:none;

}

22.  Style the table rows, headers and data cells as block-level elements

(recall that block-level elements automatically expand in width to fit

the geometry of their parent element):

table tr, table th, table td {

 display:block;

}

23.  Save and refresh menu.html in Chrome:

This is much easier to read on mobile devices, but now we’re

missing the important column headers.

522-MA-96 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.2:
Building Accessible Tables
(continued)

24.  Use CSS to add the column headers back by adding the header text

as pseudo elements before the content of each table header. Start

with Topping for the first header:

table th:nth-child(1):before{

 content: 'Topping: ';

}

25.  Save and refresh menu.html in Chrome:

522-MA-97 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.2:
Building Accessible Tables

(continued)

26.  Now add the rest of the header text pseudo elements as in the

following table:

Second td 'XL: '

Third td 'XXL: '

Fourth td 'XXXL: '

Fifth td 'Location: '

Sixth td 'Season: '

If you need help, here is the completed pseudo element CSS:

table th:nth-child(1):before{

 content: 'Topping: ';

}

table td:nth-child(2):before{

 content: 'XL: ';

}

table td:nth-child(3):before{

 content: 'XXL: ';

}

table td:nth-child(4):before{

 content: 'XXXL: ';

}

table td:nth-child(5):before{

 content: 'Location: ';

}

table td:nth-child(6):before{

 content: 'Season: ';

}

522-MA-98 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 6.2:
Building Accessible Tables
(continued)

27.  Save and refresh menu.html in Chrome:

 Congratulations! Your menu table is both accessible and

responsive.

Th is i s t he en d of t he exerci se.

522-MA-99 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project

Overview

In this Exercise, we will install Ruby, and through Ruby install Sass. We will
then create an HTML template and a SCSS template, and compile SCSS to
CSS.

 Warning! Be sure to follow the package installation steps

exactly as directed, selecting only the options as seen in the

screenshots, or your Ruby install will not complete.

1.  Locate the SOFTWARE folder on your virtual machine desktop and

double-click the following installation file:

rubyinstaller-2.4.1-2-x64.exe

2.  From the License Agreement prompt, select I accept the License

and click the Next button:

522-MA-100 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project
(continued)

3.  In the Installation Destination and Optional Tasks prompt, ensure the

path is set to C:\Ruby24-x64 and ensure only Add Ruby

executables to your PATH and Associate .rb. and .rbw files with

this Ruby installation are checked. Leave the path as

C:\Ruby24-x64.

522-MA-101 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project

(continued)

4.  Click the Install button. You should see a progress bar indicating

successful file operations.

 Warning! Do not click Finish when prompted!

522-MA-102 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project
(continued)

 Warning! Ensure the “Run ‘ridk install’ to install MSYS2

and development toolchain” option is n ot checked before

clicking Finish!

5.  Ruby is now installed on your virtual machine. Let’s test your install

by opening a command prompt (run as Administrator) and asking

Ruby about itself:
a. Press the magnifying glass icon next to the Windows button on

the bottom left of your taskbar. Type in cmd, then press

<Enter>. You should see a command prompt.

b. At the command prompt, type: ruby –v

522-MA-103 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project

(continued)

 You should see the following response from Ruby, confirming

Ruby 2.4.1 has successfully installed:

6.  It’s time to use Ruby to install Sass. If you’ve used npm and nodeJS,

this will be very familiar. From the same command prompt, tell Ruby

to search for, download and install a GEM package called Sass:

gem install sass

522-MA-104 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project
(continued)

 After a few seconds, Ruby should display a message that it is

fetching sass-3.5.x.gem. If Windows Security alerts you to allow

Ruby to run on Public Networks, click Allow. When it completes, you

should see a summary of the install:

 Congratulations! You’ve just installed Ruby and hooked the

Sass GEM into Ruby’s GEM portfolio.

7.  Before proceeding with Sass, change the current directory in your

command prompt to the Case Study directory (ask your Instructor for

assistance if you have not previously used a command prompt):

\C:\inetpub\wwwroot\pizzatree

Leave this command prompt open as you proceed to the next step.

522-MA-105 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project

(continued)

8.  We can now set up our Sass environment by opening your IDE in

Administrator Account Mode (Don't be shy asking your Instructor for

guidance!) and creating a Sass test directory in the root Pizza Tree

project folders. Name your new directory sass.

9.  Within your new /sass directory, create the following template files:

sass.html This file be our html template in which we’ll see the

results of our SCSS>CSS compilation.

sassy.scss This is our SCSS template file, which we’ll compile

into CSS.

sassy.css This CSS file will be managed by Sass.

10.  Open your new sass.html file, which should be empty. In your IDE

folder tree, goto /Demos and open

sass_starter_template.html. Copy the full content of this file

and paste it into our empty sass.html document. Here is the code:

<html>

 <head>

 <title>Welcome to SASSY CSS!</title>

 </head>

 <body>

 <div id="container">

 <p>I like to eat at Pizza Tree</p>

 </div>

 <div id="container2">

 <p>I like to get free pizza from Pizza Tree</p>

 </div>

 </body>

</html>

522-MA-106 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project
(continued)

11.  Within your newly-templated sass.html document (the one you

created in the /sass folder) add a link to an external CSS document

called sassy.css within the <head> element, under the <title>

element.

<link rel="stylesheet" href="sassy.css" />

12.  Switch back to your command prompt and dive deeper into the folder

structure by entering the new /sass folder, and tell Sass to watch

the SCSS file for changes and compile into CSS when those

changes occur.

sass -–watch sassy.scss:sassy.css

Note the double dash before the command to watch.

 You should see a message from Sass:

If instead, you see an error message, you likely told Sass to watch

the wrong directory! Fix this and try again.

522-MA-107 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project

(continued)

13.  Now it’s time to write your SCSS. Open the SCSS file you created

(sassy.scss) in an IDE. We’ll start by creating some variables that

can easily be shared by different selectors in our SCSS file:

$pM: 10px 4px;

This will be our paragraph margin variable. Continue creating

paragraph variables for color, height, width and border

$pC: tomato;

$pH: 215px;

$pW: 225px;

14.  Under your new SCSS variables, add a paragraph selector that

assigns the values of margin, color, height, width and border to the

corresponding variables you created in the last step:

p {

 margin: $pM;

 color: $pC;

 height: $pH;

 width: $pW;

 border: 2px solid $pC; /* Use a variable here too! */

}

15.  Save your SCSS file, and switch back to the command prompt. You

should see a message from Sass:

522-MA-108 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project
(continued)

16.  Switch to your IDE and examine the contents of your /sass folder.

Open sassy.css, which was an empty file you created, and

examine the CSS compiled by SCSS:

You should also see a sassy.css.map file. This is a very helpful

JSON file your browser debugger uses to map compiled CSS line

numbers back to corresponding line numbers in the original SCSS

file:

522-MA-109 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project

(continued)

17.  Open the sass.html template file in a browser to see how your

SCSS was compiled into fully compliant CSS. You should see a

paragraph that looks like the following screenshot (notice that the

second paragraph wraps—we’ll fix that soon):

522-MA-110 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project
(continued)

18.  Now let’s create a reusable @mixin within sassy.scss by creating

a common border style. An @mixin requires an identifier, in the

same way a function requires an identifier. In fact, many people

casually refer to @mixins as functions. Declare this @mixin directly

under your variables and above your standard CSS selectors:

@mixin tomatoBorder {

 border: 2px solid $pC

}

19.  Edit the paragraph selector to include the new border @mixin

instead of a hard-coded border (changes in bold):

p {

 margin: $pM;

 color: $pC;

 height:$pH;

 width: $pW;

 @include tomatoBorder;

}

20.  Save and preview in a browser. Still no changes, and your compiled

CSS file looks the same, but you’ve created SCSS that contains

easily re-usable styles. Directly under the previous @mixin, create

another reusable style by creating an @mixin for the div elements

that includes the same margin as used for paragraph elements:

@mixin divStyle {

 margin:$pM;

}

522-MA-111 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project

(continued)

21.  Below the new @mixin from Step 20 and above the paragraph

selector, create a selector for any div element with an id of

container that uses the mixins for both divStyle and

tomatoBorder:

div#container {

 @include divStyle;

 @include tomatoBorder;

}

22.  Save and preview in a browser. The first div element now has the

border assigned to the paragraph @mixin, and you didn’t have to

duplicate styles.

522-MA-112 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project
(continued)

23.  Now let’s nest paragraph element selectors within div element

selectors to avoid having to write long, repetitive composite

selectors. Remove the paragraph selector and replace the

div#container selector you wrote in the last step with the

following:

div#container {

 @include divStyle;

@include tomatoBorder ;

 p {

 @include tomatoBorder ;

 }

}

div#container2 {

 @include divStyle;

@include tomatoBorder ;

 p {

 @include tomatoBorder;

 }

}

24.  Save and preview. Both div elements and both paragraph elements

now share a common border:

522-MA-113 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project

(continued)

25.  Switch back to sassy.css in your IDE. SCSS has compiled the

nested styles into duplicated composite styles, one each for

div#container p and div#container2 p. Imagine how much

more difficult it would be to manage a deeply nested HTML tree of

thousands of elements with heavy CSS composite styles, when you

can simply reuse what you need with SCSS and compile into CSS!

26.  Integrate operators and functions into your SCSS by adding

properties for width and border to the second div selector. Switch

back to sassy.scss in your IDE. Add 100 pixels to the paragraph

width variable. Use a SCSS function to darken the paragraph border

color by 25% as follows (code to add in bold text):

div#container2 {

 @include divStyle;

 @include tomatoBorder;

 p {

 @include tomatoBorder;

 width: $pW + 100;

 border: 4px solid darken($pC, 25%);

 }

}

27.  Save your work and preview. Your second paragraph should now be

a darker shade of tomato and 335px wide as in the following

screenshot:

522-MA-114 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.1:
Managing a Sass Project
(continued)

28.  Examine the compiled CSS document for changes made by the last

SCSS watch.

 Congratulations! You have successfully installed Ruby and

Sass, and created an SCSS document leveraging variables,

@mixins, nested selectors, operators, and functions. You have

also used Sass’s watch command to compile SCSS to CSS.

Th is i s t he en d of t he exerci se.

522-MA-115 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap

Overview

In this exercise, we will invoke Bootstrap classes to style an HTML document.
Our starting point is a fresh, clean HTML document with the CSS Reset
applied.

Screenshots taken for this exercise are in 1200px viewport width for desktop
view, 420px viewport width for mobile view.

Part 1: Setting up Bootstrap with Basic Components

1.  Open the following files in your IDE and Chrome:

C:\inetpub\wwwroot\pizzatree\Ex\Ex.7.2\bootstrap.html

2.  In your IDE within bootstrap.html and directly under the CSS

reset <link> element, add CDN references for Bootstrap 4.0.0 beta

using the following CSS and JS resources (copy from the text file

located in Exercise directory):

<link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-

beta/css/bootstrap.min.css" integrity="sha384-

/Y6pD6FV/Vv2HJnA6t+vslU6fwYXjCFtcEpHbNJ0lyAFsXTsjBbfaDjzALeQsN6M"

crossorigin="anonymous">

<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-

beta/js/bootstrap.min.js" integrity="sha384-

h0AbiXch4ZDo7tp9hKZ4TsHbi047NrKGLO3SEJAg45jXxnGIfYzk4Si90RDIqNm1"

crossorigin="anonymous"></script>

Bootstrap 4 added the integrity and crossorigin attributes to

validate CDN source authenticity and work across CORS

restrictions.

522-MA-116 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap
(continued)

3.  Bootstrap requires a master container class, which acts as the

ancestor element to all descendant Bootstrap classes. Add a <div>

element with a class="container" to the HTML document:

<div class="container">

</div>

All content must now be placed within this container element to
leverage Bootstrap functionality.

Add another <div> element to act as our first Bootstrap row, and

within this row add your first Bootstrap column:

 <div class="row">

 <div class="col">

 </div>

 </div>

4.  Within the class value that includes col you created in the previous

step, add the class jumbotron:

<div class="col jumbotron">

5.  Add some content to the <div> element that is now a Bootstrap

Jumbotron by including your name followed by the words Pizza Tree:

<div class="col jumbotron">
 Luigi’s Pizza Tree

</div>

522-MA-117 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap

(continued)

6.  Add a <p> element within the Jumbotron, after the text you added in

the previous step. Give your paragraph a class="lead" to make it

stand out:

<p class="lead">This is a Bootstrap Hero Unit</p>

7.  Save bootstrap.html and preview your work in Chrome:

8.  Still within Chrome, press <F12> to open the browser debugger so

you can inspect the Bootstrap elements you just created. Press the

Inspect Element button located on the top left of the debugger tools:

522-MA-118 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap
(continued)

Move your cursor over the viewport and click any element to reveal

the CSS applied in the browser debugger’s Styles pane. In the

following screenshot, the Jumbotron is being inspected:

9.  Currently, our Jumbotron is not a full-width element. Within the

element.style {} Filter in the Styles tab, single left-click to add

CSS until your Jumbotron is 100% wide:

width:100%

10.  Continue to inspect elements and adjust element.style Filters to

see what CSS is added when Bootstrap classes are applied to HTML

elements. Don’t spend more than two or three minutes; we have

more to do in this exercise!

11.  Switch back to your IDE and add a <style> element around line 10

in bootstrap.html that corrects the full-width issue with our

Jumbotron class:

<style>

.jumbotron {

 width:100%

}

</style>

522-MA-119 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap

(continued)

12.  Save and preview in Chrome. You have just started customizing

Bootstrap:

13.  Add a button to order pizza directly under the Hero Paragraph and

within your Jumbotron. Bootstrap will convert any <a> or <button>

element when a class="btn" is applied. Add additional classes to

change the button color, size, and other options. For example, to

make the button blue, add btn-primary to your class:

<button type="button" class="btn btn-primary">Order Now</button>

14.  Save and preview your work. Hover over and click your button to see

the different states applied to CSS:

522-MA-120 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap
(continued)

15.  Add another button directly after your first button to cancel orders,

and make it both red with a btn-danger class and right-aligned with a

float-right class:

<button type="button" class="btn btn-danger float-

right">Cancel Order</button>

16.  Save and preview your work:

Part 2: Creating Responsive Multi-Column Layouts

17.  Switch back your IDE. We will now create a typical three-column

layout for display deals by city, much like we did with our case study,

but instead of using flexbox, we will use Bootstrap Columns.

 Bootstrap rows span 12 columns by default. Bootstrap 4 now

auto-assigns equal column widths when columns are created with

the col class.

522-MA-121 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap

(continued)

18.  After the first row that contains our Jumbotron (make sure you’re still

in the root container class!), add a new Bootstrap row that contains

three columns, each spanning 4 Bootstrap columns:

<div class="row">

 <div class="col">

 <h3>Washington Special</h3>

 </div>

 <div class="col">

 <h3>About Pizza Tree</h3>

 </div>

 <div class="col">

 <h3>London Special</h3>

 </div>

</div>

19.  Save and preview your work:

522-MA-122 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap
(continued)

20.  It can be difficult to visualize the column sizes, so add some

Bootstrap alert classes to each Bootstrap column. Set the first and

last to alert alert-primary, set the middle column to alert alert-

success:

<div class="row">

 <div class="col alert alert-primary">

 <h3>Washington Special</h3>

 </div>

 <div class="col alert alert-success">

 <h3>About Pizza Tree</h3>

 </div>

 <div class="col alert alert-primary">

 <h3>London Special</h3>

 </div>

</div>

21.  Center the text within each <h3> element by adding a text-

center class:

<div class="row">

 <div class="col alert alert-primary">

 <h3 class="text-center">Washington Special</h3>

 </div>

 <div class="col alert alert-success">

 <h3 class="text-center">About Pizza Tree</h3>

 </div>

 <div class="col alert alert-primary">

 <h3 class="text-center">London Special</h3>

 </div>

</div>

522-MA-123 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap

(continued)

22.  Expand the width of the middle Ottawa Special so it occupies 50%

(1/2 of the available 12 cols) of the row width:

<div class="col col-6 alert alert-success">

 <h3 class="text-center">Ottawa Special</h3>

</div>

23.  Save and preview your work:

So far so good; however, narrow your viewport and you’ll see that

while Bootstrap is indeed responsive, once your viewport resizes to

<= 768px, we have an unanticipated effect that must be fixed:

We have not explicitly assigned any column width to the first and last

columns, and Bootstrap is wrapping the third column, which is now

522-MA-124 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

100% width.

522-MA-125 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap
(continued)

24.  Add explicit column widths to the first and last columns, each set to

col-3:

<div class="row">

 <div class="col col-3 alert alert-primary">

 <h3 class="text-center">Washington Special</h3>

 </div>

 <div class="col col-6 alert alert-success">

 <h3 class="text-center">Ottawa Special</h3>

 </div>

 <div class="col col-3 alert alert-primary">

 <h3 class="text-center">London Special</h3>

 </div>

</div>

25.  Save and preview your work:

522-MA-126 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap

(continued)

While our columns are now properly sized in smaller viewports, the

padding applied to the root container class is causing loss of visible

text in the Washington Specials at around 760px. It would be best to

collapse this view at this width by adding viewport-specific column

width classes to our three-column layout, based on the following

Bootstrap Viewport definitions:

Extra Small xs viewport < 576px wide

Small sm viewport > 576px and <= 768px wide

Medium md viewport > 768px and <= 992px wide

Large lg viewport > 992px and <= 1200px wide

Extra Large xl viewport > 1200px wide

26.  Multiple viewport settings can be applied to the same column by

aggregating col classes and specifying the viewport width for each

class. Adjust the column settings for each of our three columns to

collapse all buttons to full-width when viewport width is less than

medium:

<div class="row">

 <div class="col col-12 col-md-3 alert alert-primary">

 <h3 class="text-center">Washington Special</h3>

 </div>

 <div class="col col-12 col-md-6 alert alert-success">

 <h3 class="text-center">Ottawa Special</h3>

 </div>

 <div class="col col-12 col-md-3 alert alert-primary">

 <h3 class="text-center">London Special</h3>

 </div>

</div>

522-MA-127 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap
(continued)

27.  Save your work and preview your viewport in multiple widths:

Part 3: Interacting with the User

28.  JavaScript alert, confirm, and prompt modal (blocking) functions are

extremely basic and unappealing in modern UI. Bootstrap modals

add a modern, polished look to any UI and require very little code to

function. Bootstrap’s JavaScript library will automatically handle the

triggering and display of modals, hiding the underlying JavaScript

mechanisms.

Switch back your IDE and within bootstrap.html, locate the first

button we created (Order Now) near line 25.

Within this <button> element and after the class attributes, add the

bootstrap attributes data-toggle="modal" (this identifies the

button as a JavaScript trigger for a Bootstrap Modal Event) and data-

target=”#orderNow” (this identifies the button as a toggle for the

orderNow class, which will be created shortly):

<button type="button" class="btn btn-primary"

data-toggle="modal" data-target="#orderNow">Order

Now</button>

522-MA-128 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap

(continued)

29.  Create the Bootstrap Modal content to display when the data-toggle

is clicked. Place this new div element OUTSIDE and UNDER the

container div:

<div class="modal" id="orderNow">

 <div class="modal-dialog" >

 <div class="modal-content">

 </div>

 </div>

</div>

30.  We need to include JavaScript references for jQuery and Popper

before we reference the Bootstrap JavaScript library. At around line

8, after the CSS <link> but before the Bootstrap JavaScript

reference, add the following CDN references:

<script src="https://code.jquery.com/jquery-

3.2.1.slim.min.js" integrity="sha384-

KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/G

pGFF93hXpG5KkN" crossorigin="anonymous"></script>

<script

src="https://cdnjs.cloudflare.com/ajax/libs/popper

.js/1.11.0/umd/popper.min.js" integrity="sha384-

b/U6ypiBEHpOf/4+1nzFpr53nxSS+GLCkfwBdFNTxtclqqenIS

fwAzpKaMNFNmj4" crossorigin="anonymous"></script>

31.  Save your work and preview. Clicking the Order Now button will

instantly apply a transparent grey overlay on top of the viewport, but

there is no content yet:

522-MA-129 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap
(continued)

32.  Bootstrap Modal content is comprised of a Header, Content and

Footer class trio. Switch back to your IDE and within bootstrap.html,

add the following modal-header class within the modal-content class:

<div class="modal-content">

 <div class="modal-header">

 <h5 class="modal-title">Get your Fresh Pizza!</h5>

 </div>

</div>

33.  After the new modal-header class, add a content and footer class:

<div class="modal-header">

 <h5 class="modal-title">Get your Fresh Pizza!</h5>

</div>

<div class="modal-body">

 Get your Toppings!

</div>

<div class="modal-footer">

</div>

34.  Save and preview in Chrome:

The modal dialog works, but it cannot yet be dismissed. We can

continue to apply this JavaScript functionality with Bootstrap classes

in the next step.

522-MA-130 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap

(continued)

35.  Switch back to your IDE and within bootstrap.html, add a button to

the modal-footer class that closes the modal class by adding a

Bootstrap data-dismiss=”modal” attribute/value pair:

<div class="modal-body">

 Get your Toppings!

</div>

<div class="modal-footer">

 <button type="button" class="btn btn-danger" data-

dismiss="modal">Cancel Order</button>

</div>

36.  Save and preview your fully functional modal dialog:

37.  In an earlier exercise, we used a Ruby Gem to install Sass. Sass

and Bootstrap work extremely well together, and using Sass with

Bootstrap provides developers with additional control over their

Bootstrap distributions.

Let’s install the Bootstrap Gem so we can use Bootstrap Sass

throughout our web application.

522-MA-131 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

522-MA-132 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap
(continued)

Open a command prompt by pressing the magnifying glass button on

the bottom left of your taskbar, typing cmd: and pressing <Enter>.

At the command prompt, type the following:

gem install bootstrap -v 4.0.0.alpha4 -–pre

You should see the following response (if you did not complete

Ex 7.1, this step has also installed Sass, and your screenshot

will be nearly identical. If you did complete Ex 7.1, your

screenshot will be slightly different as your command prompt

will contain fewer installation log entries with Sass already

installed):

522-MA-133 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Exercise 7.2:
Managing Bootstrap

(continued)

Within your GEM folder in C:/Ruby24-x64, you now have a full

local bootstrap Sass distribution:

 Congratulations! Manipulating Bootstrap via Sass and Ruby

is not only an entire Exercise on its own, but is best left to an

environment dedicated exclusively to Bootstrap. You are

already well on your way to creating a custom Bootstrap

template, but you have added the Bootstrap Gem to your Ruby

Install, which allows you to continue your Sass development by

customizing the base Bootstrap install with Sass.

Th is i s t he en d of t he exerci se.

522-MA-134 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

522-MA-135 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Execise 8.1:
Responsive Menus With JS

Overview

In this final exercise, we will convert our CSS menu to an accessible and
responsive, collapsing menu without the requirement for a third-party
JavaScript library such as jQuery.

Screenshots taken for this Exercise are in 1200px viewport width for desktop
view, 420px viewport width for mobile view.

1.  Open the following file in your IDE and Chrome:

C:\inetpub\wwwroot\pizzatree\Ex\Ex.8.1\index.html

2.  In your IDE, goto the bottom of index.html and add an empty

<script> element just before the closing <body> element near line

100 (leave a blank line between tags):

<script>

</script>

3.  Within the <script> body, use JavaScript to retrieve an element

with an id attribute matching menuToggle. Our hamburger icon has

the attribute id="menuToggle".

document.getElementById('menuToggle')

4.  Bind a click event listener to the menuToggle:

document.getElementById('menuToggle').addEventListener('click',

522-MA-136 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Execise 8.1:
Responsive Menus With JS
(continued)

5.  When JavaScript hears the click on the menuToggle, invoke a

function that accepts a parameter called e (short for event):

.addEventListener('click', function(e) { }, false);

 Is the ,false) required? Yes. This tells our event binding

mechanism not to use event propagation, a topic of discussion best

suited to a dedicated JavaScript environment.

6.  Within the body of the function, add a modal alert that confirms

operation of the toggle:

<script>

document.getElementById('menuToggle').addEventListener('click',

function(e) {

 alert('The Menu Toggle was Clicked')

}, false);

</script>

7.  Save index.html and preview in Chrome. Click the menu toggle

and you will see your alert:

522-MA-137 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Execise 8.1:
Responsive Menus With JS

(continued)

8.  It’s time to display our menu instead of our modal message when the

toggle is clicked.

First, we must detect the current state of menu display, which is

based on the presence of the collapse class. We then set the

collapse class to the opposite of the current display state, and modify

the display property of our menu according to the status of the

collapse class.

Add the following JavaScript logic within the body of your function:

document.getElementById('menuToggle').addEventListener('click',

function(e) {

 if (e.target.parentNode.parentNode.className == 'menuToggle

collapse') {

 e.target.parentNode.parentNode.className = 'menuToggle';

 document.querySelector('div#feature header').style.display

= 'block'

 } else {

 e.target.parentNode.parentNode.className = 'menuToggle

collapse';

 document.querySelector('div#feature header').style.display

= 'none'

 }

}, false);

522-MA-138 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Execise 8.1:
Responsive Menus With JS
(continued)

9.  Save your work and preview in Chrome. Toggle the menu and

confirm it is responsive by adjusting viewport widths:

522-MA-139 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

522-MA-140 © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent.

Hands-On Execise 8.1:
Responsive Menus With JS

(continued)

10.  Confirm your menu is accessible by removing the CSS using the

Web Developer Extension:

 The “Now with gluten-free RWD” and hamburger icon can be

removed from the linear layout and accessibly added to the rendered

content easily with jQuery. Trying to do so with POJO is an exercise

in frustration!

 Congratulations! You have completed converting the case

study to an accessible and responsive website.

Th is i s t he en d of t he exerci se.

